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Abstract

Query suggestion is  generally  an integrated part  of  web search engines.  In  this  study, we first  

redefine and reduce the query suggestion problem as “comparison of queries”. We then propose a 

general modular framework for query suggestion algorithm development.  We also develop new 

query suggestion algorithms which are used in our proposed framework, exploiting query, session 

and user features. As a case study, we use query logs of a real educational search engine that targets 

K-12  students  in  Turkey.  We  also  exploit  educational  features  (course,  grade)  in  our  query 

suggestion  algorithms.  We  test  our  framework  and  algorithms  over  a  set  of  queries  by  an 

experiment  and  demonstrate  a  66-90%  statistically  significant  increase  in  relevance  of  query 

suggestions compared to a baseline method.  

Keywords: Query suggestion, framework, educational search engine, query recommendation

1. Introduction

The number of Internet users in the world is estimated to be more than 2.89 billion, as of May 

2014, which accounts for 42.3% of the human population  (Internet Society, 2015). Advances in 

smart phone technology and network bandwidths also boosted Internet data traffic in the last few 

years.  It  has  also enabled  the  very young population  to  access  the Internet.  People use  search 



engines to find the relevant information in this immense environment. Large scale search engines 

try  to  cope  with  these  demanding  requirements  coming  from  a  very  diverse  population  with 

differing cultures and ages. There is recent interest in literature for analyzing search behavior of 

different user groups, especially children. 

The primary goal of a search engine is to retrieve relevant results of a query with high ranks. 

Even though this objective primarily depends on the search engine ranking algorithm, the quality of 

the submitted query is also important. To this end, query suggestion (recommendation) techniques 

help users to formulate or refine their queries. A search engine may provide suggestions while the 

user  is  typing the query (referred to  in  literature  as  “query auto-completion”)  or  after  a  query 

submission. This paper focuses on the latter type of query suggestion techniques. Earlier studies 

addressing this problem mainly focus on large scale search engines that target the public with very 

diverse information needs. On the other hand, vertical search engines index resources on a specific 

subject  and respond to queries  coming from a specific group of people.  An educational  search 

engine, to give an example of a vertical engine, targets students (and instructors) and covers course-

related  resources.  Query  suggestion  techniques  for  such  systems  are  not  well  investigated  in 

literature before. It is important to check whether algorithms proposed for large scale search engines 

still  apply for vertical search engines. Query suggestion is more important for K-12 educational 

search engines since children have difficulty in formulating queries.

In this study, we first redefine and reduce the query suggestion problem as a series of query 

comparisons. We propose a  general modular framework based on this definition. Our framework 

includes two major steps along with several minor steps. In the first major step, candidate queries 

for  suggestion  are  selected.  Next,  these  queries  are  sorted  based  on  different  query  scoring 

algorithms exploiting various query, session and user features. Our framework is modular so that 

new query candidate selection and query scoring methods can easily be plugged in. It also enables 

several methods to be combined easily.

We evaluate the performance of query suggestion techniques proposed for large scale search 



engines on an educational search engine and try to improve query suggestion. Even though vertical 

search engines have smaller numbers of users and click-through data, they generally have more 

extensive and specific features related to their users and their content. In the case of an educational 

search engine,  age,  grade,  school  and city  of  a  student  could be recorded as extra  features.  In 

addition, indexed resources may have specific properties such as course, related grade(s), content 

type (subject description, questions, animation/game, etc.), related curriculum items. All these extra 

features  could  be  exploited  for  more  advanced  ranking  and  query  suggestion  techniques.  We 

propose new suggestion techniques based on some of these features and compare their effectiveness 

to former techniques in literature.

Our main contributions in this work are listed as follows:

• We redefine and reduce the “Query Suggestion (QS)” problem,

• We propose a modular, extendable query suggestion framework that enables new methods to 

be easily plugged in and may contain many QS algorithms.

• We evaluate  the  performance of  a  click-through data  based  QS technique  proposed  for 

general purpose search engines in literature, on a real educational search engine log.

• We propose new QS algorithms that exploit query features for general (query, session, user 

features) and educational search engines (course and grade features).

• We  also  propose  hybrid  algorithms  that  combine  several  QS  techniques  for  higher 

effectiveness. These algorithms are integrated in the above mentioned framework.

This paper is organized as follows: Section 2 gives information on the related works on query 

suggestion and briefly mentions studies focusing on child users. We then introduce how we redefine 

and reduce the query suggestion problem. We present our query suggestion framework where the 

query suggestion problem is handled in a modular and pluggable architecture, in the subsequent 

section. We then mention query scoring and comparison algorithms exploiting various features such 

as query, session, user and educational properties. In Section 6, we mention our experimental setup 

and discuss the results. Finally, we conclude the paper and mention future research directions.



2. Related Work

Search engines appeared on the World Wide Web just after the Web became an important source 

of information in the '90s. Search engines started to offer basic query suggestions to users. It is 

important  to  analyze  the  general  behavior  of  users  on  search  engines   before  presenting  the 

literature. Queries that are submitted by users are usually short, poorly built and mistyped  (Cui, 

Wen, Nie, & Ma, 2002). Users may also not have enough information about the topic they are 

searching for. This is especially the case when developing a search system for child users (Torres, 

Hiemstra, Weber, & Serdyukov, 2012) because this group of users has difficulty in formulating their 

queries (Babuscu & Özcan, 2014). 

Query suggestion literature works can be classified in two different groups (Bhatia, Majumdar, 

& Mitra, 2011). The majority of recent works  (Arora & Duhan, 2013; Baeza-Yates, Hurtado, & 

Mendoza, 2005; Cao et al., 2008) mine query logs in order to give suggestions. The second line of 

studies (Bhatia et al., 2011; Bordogna, Campi, Psaila, & Ronchi, 2012) does not require a query log 

and performs “content analysis” of web pages or retrieved document snippets. There are several 

other  studies  that  try  to  understand user  context  for  suggesting new queries  (Cao et  al.,  2008; 

Huang, Chien, & Oyang, 2003). User information (age, gender, username, IP, tools) and previous 

queries in a query session can be considered as context.

Query Suggestion was in the form of “Query Clustering” or “Term Clustering” in early studies 

(Lewis & Croft, 1990). Later works (Fonseca, Golgher, de Moura, & Ziviani, 2003; Wang & Zhai, 

2008) try to identify association rules between queries by mining query logs. Several other studies 

(Baeza-Yates et al., 2005; Mei, Zhou, & Church, 2008; Wen, Nie, & Zhang, 2001) extract query-

clicked URL/doc bipartite graphs using search logs and exploit the connections in order to figure 

out related queries and documents. These bipartite graphs consist of a group of nodes representing 

queries, another group of nodes representing URL's and edges connecting these two groups when 

there is a click between a query and a URL. We refer to this graph as “query click graph” in the rest  

of this paper. The “Hitting Time” algorithm  (Mei et al.,  2008) is an example of finding related 



queries using this graph. This algorithm computes the transition probabilities between initial query 

and candidate queries (candidates for suggestion) on the graph using frequencies as the weight 

between queries and clicked URL's. The details of this algorithm are presented in Section 5.1, since 

we adopt this algorithm in our study. As an alternative to the query click graph, Boldi et al., (2008) 

propose query-flow graph data structure by mining query logs. This graph contains edges between 

queries along with a weight component. Weight function is learned using textual, session and time-

related features among pairs of queries. In a subsequent study (Boldi, Bonchi, Castillo, Donato, & 

Vigna,  2009),  they  propose  random walk  based  method  over  this  query-flow  graph  for  query 

suggestion.  (Wen et al.,  2001) cluster queries using textual content of queries and their  clicked 

documents  and  these  clusters  are  used  to  determine  frequently  asked  queries.  (Baeza-Yates, 

Hurtado,  &  Mendoza,  2007) uses  query  clustering  to  both  relevance  ranking  and  query 

recommendation.  In this work, clustering process is based on a term-weight vector representation 

of  URLs  clicked  after  queries.  Actually,  query  logs  may  have  more  than  just  query-click 

information. There may also be features like query frequency, issue date/time, number of results etc. 

(Silvestri, 2010) which can be used in the query suggestion process. We also use many of these 

features in this work. 

Another  important  method  of  query  suggestion  is  content  analysis.  Methods  mentioned  in 

(Bhatia et al., 2011; Kraft & Zien, 2004) exploit the contents of queries, contents of documents, 

document snippets or anchor texts to identify similar queries.  These are also used in situations 

where a query-log is not available.

One basic form of query suggestion is “query expansion”. Adding some relevant terms to the 

original query may be useful in many cases (Cui et al., 2002), which is relatively easy to implement. 

Query suggestion may be seen as a different form of “query reformulation which is usually done by 

users”.  In  other  words,  query  suggestion  can  be  seen  as  query  reformulation  which  is  done 

automatically  by  the  search  engine  itself.  In  literature,  query  reformulations  are  classified  into 

different  categories  such  as  generalization,  specialization,  error  correction  and  parallel  move. 



(Jansen & Spink, 2006) show that 46% of users reformulate their queries based on analysis of a 

large query log. (Lau & Horvitz, 1999) presents a Bayesian network based probabilistic approach to 

predict how users refine their queries. 

There is a recent interest in researching the search characteristics of young users (Torres, Weber, 

&  Hiemstra,  2014;  Usta,  Altingovde,  Vidinli,  Ozcan,  &  Ulusoy,  2014) and  developing  new 

techniques  for  this  group of  users  (Torres  et  al.,  2012).  As  we noted  earlier,  child  users  have 

difficulty  in  formulating  queries  (Babuscu  &  Özcan,  2014) and  query  suggestion  or  auto-

completion  mechanisms  have  a  higher  necessity  for  them.  In  this  study,  we  work  with  an 

educational search engine that is used primarily by students in grades 5 through 8. To the best of our 

knowledge, (Torres et al., 2012) presents the first work on query suggestion techniques specialized 

for children. Regarding the information needs of students,  (Yılmazel, 2011) develop a query log 

based query suggestion component for a search engine indexing distance education textbooks for 

university students in Turkey. A collaborative filtering based approach is used (with Apache Mahout 

tool) such that similarities between queries (items) are computed based on the idea that how many 

times they are searched together in a session. His method only uses session information of queries 

and  does  not  exploit  any  educational  features.  Our  study  is  the  first  work  proposing  query 

suggestion techniques for an educational search engine targeting K-12 students, as far as we know. 

We introduce  a  modular  framework and propose  query suggestion algorithms exploiting  query, 

session, user, and educational features.

3. Redefinition and Reduction of the Query Suggestion Problem

Query Suggestion (QS) is usually defined to be “finding some related queries given the original 

query which is issued by the user”. For example, when the user issues the query “American airline”, 

the search engine would suggest  search terms such as “airline tickets”,  “online airline tickets”, 

“American airline reservation” etc. In Section 2,  we report several key papers proposing methods 

for finding these types of suggested queries. Majority of these works propose techniques that may 



operate on several data types such as query logs, document contents or user context and produce 

ordered  list  of  suggested  queries  as  a  whole.  To achieve  a  more  modular, straightforward  and 

practical approach, the query suggestion problem may be simplified as follows:

We redefine the query suggestion problem as follows: The QS problem should be simply thought  

of as “a series of 'comparison of two queries'”. The first query in the comparison is the original 

query that was issued by the searcher (user). The second query is the “candidate query” that is to be 

suggested to the user, if selected at the end of suggestion process. The comparison of queries may 

depend on several features such as term similarity, query logs, etc. This approach of comparing 

queries may be practical in the sense that it simplifies the query suggestion problem, makes the 

process traceable, extendable and debuggable.

A set of candidate queries (for suggestion) are determined for a submitted (initial) query qi and 

each candidate query (qc) is compared to qi. Finally, candidate queries can be sorted based on their 

ranks/scores and top-n candidate queries may be presented to the user as query suggestions. 

This approach has these advantages:

• The QS problem is obviously reduced to a “comparison of two queries”, the original and 

candidate query;

• Two queries may be compared with many straightforward methods; 

• Multiple query comparison methods may be easily combined;

• It is easy to trace, debug and develop new methods with this approach.

With this reduction of the problem, one should only be concerned about the comparison of two 

queries,  nothing  more.  However,  the  comparison  does  not  necessarily  refer  to  the 

similarity/relatedness of two queries but it  may also measure different  aspects  of queries to be 

compared.  For  example,  one  can  check  for  excessive  closeness/similarity  of  the  queries  for 

diversification purposes.



4. Query Suggestion Framework

In this work, we suggest a straightforward QS framework which can be extended by plugging in 

new QS algorithms. By establishing a well-defined framework, the QS process and problem is 

simplified.  Different  methods  and  algorithms  may  be  plugged  into  this  framework,  making  it 

possible to compare and/or combine different methods. 

The framework consists of two main steps: select & sort. Some additional relatively simple and 

small steps may also be included in the process to improve accuracy; so we include post-select 

(generic controls), post-sort (final controls) steps. Our framework (also shown in Figure 1) contains 

the following steps:

 1. Select/Find candidate queries (Major step)

 2. Generic controls (Optional, relatively minor step)

 3. Sort candidate queries with single/multiple algorithms (Major step)

 1. Final controls

 a) Generalization, diversification, (Optional, relatively minor step)

 a) Re-ordering, post-processing (Optional, relatively minor step)



The basic ideas of our steps in the framework are described as follows: 

• Selection  of  candidate  queries  can  be  done  in  a  separate  step,  by  means  of  different 

algorithms such as traversing the query click graph using Depth First Search (DFS) as in 

(Mei et al.,  2008) or Breadth First Search (BFS) etc. This is a completely different and 

separate step to the other steps. The purpose is to “find, explore” possible query suggestions 

(hereafter referred to as Query Suggestion Candidates). In the most generic situation, all 

input queries may be candidate queries. If we have enough processing power, we may use 

this generic situation where all queries are considered as candidates for suggestion.

• Generic controls (although not a major step nor mandatory) may be used to eliminate some 

useless queries from candidate queries. Dropping very short (1-2 letter) queries, very long 

queries or mistyped queries are examples of such controls. 

• Sorting the prepared candidate queries is the next major step. Existing QS algorithms that 

we mention in the Section 2, techniques we propose in this paper or any sorting algorithm 

that  orders  candidate  queries  can  be  used  in  this  step.  Our  framework  also  enables 

FIG. 1. Query suggestion framework



combining more than one sorting method, which we also employ in this work.

• Query generalization or diversification procedures (Non-major step, at least, at the moment) 

may be applied after the sorting phase in order to fine tune the suggestions before showing 

to the user. Query generalization selects more general forms of the initial query such as 

proposing  “cell  structure”  or  “cell”  to  the  user  submitting  query  “mitochondria”. 

Diversification techniques can also be employed in this step so that very similar queries 

should not be shown to the user as suggestions. For instance, “multiplication in rational 

numbers”,  “multiplication of  rational  numbers”  and “multiplication operation in  rational 

numbers” queries should not be shown to the user together.

• One of  the  most  important  aspects  of  this  framework is  to  break  the  query  suggestion 

problem into pieces. This concept is also known as “Separation of Concerns” that is favored 

in several fields. Using this framework, one may contribute to the QS problem by proposing 

a new algorithm (i.e., query candidate selection algorithm) for a specific step without having 

to handle other steps.

The overall diagram of the framework is shown in Figure  1, with different colorings for 

major and minor steps. In the following subsections, we give further details of each step in our 

framework.

4.1. Selection Phase

Selection phase is the first major step of our proposed query suggestion framework. In this step, 

the purpose is to find candidate queries for suggestion. Candidate queries could either be selected 

from a set of previous queries by some means or generated in the absence of query logs. In this  

study, we focus on query suggestion methods using query logs. Candidate queries can be obtained 

from query logs by traversing query click graph using DFS or BFS. In the most generic situation, all 

input  queries  or  all  possible  queries  may  be  candidate  queries,  although  this  requires  high 

processing power. 

Our initial experiments show that candidate queries found using DFS seem straying away from 



the topic of the initial query as DFS traverses the query click graph in a depth first fashion (except  

for head queries). However, this method is used in the Hitting Time algorithm (Mei et al., 2008) that 

we mention in subsection 5.1.

Breadth First Search (BFS), on the other hand, seems more suitable for finding related queries 

since graph traversal is not straying away from the subject of initial query, in contrast to the DFS 

case. For this reason, we use and experiment with BFS as a “query selection algorithm” in this work 

and demonstrate in Section  6 that it is more suitable/useful for query suggestion, for at least our 

query log.

4.2. Generic Controls

These are some basic checks that can be done before proceeding to the sorting phase. Although 

this is not a major step, it may sometimes be quite useful to eliminate some erroneous or strange 

queries from the set of candidate queries. We find that the following basic controls are useful in 

general QS procedure:

i. Long queries having too many words/letters removed;

ii. Too short queries are removed;

iii. Queries that are a subset of the initial query are removed;

iv. Too generic queries (such as science, math, course, questions etc.) are removed;

v. If the course of the initial query is known (or can be predicted), queries related to different 

courses are removed from the candidate set.

After we eliminate candidate queries based on these criteria, we finally apply a click frequency 

threshold such that candidate queries with very low number of clicks are also filtered.

All  filtering  mechanisms apply  for  general  purpose  search  engines.  However, the  last  item 

exploits an educational feature and only applies for vertical search engine focusing on education 

materials,  which  is  our  case  in  this  work.  Our  basic  intuition  behind  this  step  is  that  query 

suggestion system should suggest queries related to the same course as the course of the initial  



query. Note that this requires course information of initial query and candidate queries to be known 

or predicted. The list of controls can be extended by experimenting with QS framework/algorithms 

or based on the specific domain we are searching. For future work, spell checking and correction 

can be implemented in this stage (we did not implement/use spell checking feature).

4.3. Sorting Phase

In this subsection, we describe the sorting phase of our framework. The sole purpose of this 

major step is to order candidate queries based on some means such as similarity to the initial query 

or co-occurrence with the initial query in the same query sessions etc. Candidate queries could be 

sorted  based  on  such  various  aspects.  Our  framework  provides  a  modular  mechanism so  that 

various orderings of candidate queries could be combined for higher accuracy in query suggestion. 

In  Section  5 we present  various  query scoring and comparison techniques  by exploiting query 

features for general (query, session, user features) and educational search engines (course and grade 

features).  Note  that  our  framework  allows  new  candidate  query  ordering  mechanisms  to  be 

employed in a straightforward manner.

We now give the details of our sorting step in our framework. Let  qi denotes the initial query 

submitted by the user. In the following example our initial query is “American airline”. Let  Cqi 

denotes the set of candidate queries for qi in a vector form as shown below (for simplicity, only 4 

candidates  are  shown).  Assume  that  there  are  N different  candidate  sorting  methods  that  are 

available  in  the  framework  and  each  of  them  produces  an  ordering  of  candidate  queries  by 

computing scores. We denote this score vector as Vj (j ranging from 1 to N) and show an example 

below. 

Candidate Queries (Cqi )=[
american airlines
airline tickets
airline phone
airline reservation ]=[

q1

q2

q3

q4
]



V 1=[
Score of q1 wrt q i

Score of q2 wrt q i

Score of q3 wrt q i

Score of q4 wrt qi
]=[

Sq1

Sq2

Sq3

Sq4
]

Our framework combines  various  candidate  ordering  algorithms.  This  can  be  done  by any 

aggregation method. We worked on the aggregation methods that are mentioned in Section  4.3.1. 

The aggregation of sorting algorithms may be seen similar to the aggregation of search engine 

results in a metasearch engine as described in (Aslam & Montague, 2001). We tried to improve the 

query suggestion performance by combining multiple sorting algorithms.

4.3.1. Aggregation Methods

Aggregation methods may be classified at least in two categories, score based and rank based 

methods  (Renda & Straccia, 2003). Other approaches may also be suggested. We currently work 

with these two types of aggregation methods.

4.3.1.1. Weighted Score Based Aggregation 

We suggest that, aggregation of different sorting/ordering algorithms may be done by weighted 

summation of score vectors, as shown in the following formula:

Final Score Vector=k1⋅Norm(V 1)+k2⋅Norm(V 2)+...+k n⋅Norm(V n)= ∑
i=1

number of algorithms

k i⋅Norm(V i)

where normalization is computed as:

Norm(V )={
x

max(V )
  ∣  ∀ x∈V }

Each ordering is weighted by coefficients k1 through kn. Note that each score vector Vj can have 

scores  in  different  ranges  so  they  need  to  be  normalized  (re-scaled  into  0-1  range)  before 

combination. Finally, a score vector is obtained. By re-scaling the individual vectors, the final score 

is not over-affected by a single algorithm (even if it  has high/erroneous values), instead,  single 

algorithm affects the final score up to a certain reasonable amount. This is also useful to suppress 

errors, mistakes or biases caused by some algorithms. As we experienced  in Section  6, different 



algorithms achieve different success rates on different input queries. Just like metasearch engine 

case,  input  methods  does/may  not  achieve  same  success  rates  (Aslam  &  Montague,  2001), 

therefore, weighted combination of algorithms may show better performance.

Next, we observe that some candidate sorting algorithms (especially the ones depending on 

query frequency, number of results) produces a few very high scores with lots of very low scores.  

We revise our formula as below by applying log transformation for such skewed distributions. Note 

that logarithmic transformation is not applied to all score vectors in our works but here we show as 

such for the sake of simplicity. 

Final Score Vector=k1⋅Norm (log (V 1))+k2⋅Norm (log(V 2))+...+kn⋅Norm (log(V n))

= ∑
i=1

number of algorithms

k i⋅Norm ( log(V i))

The coefficients  k1,  k2...  are used to promote algorithms which are known/observed to have 

better effects in final results. For testing purposes, coefficients of some algorithms may be taken as 

zero.  It  may  also  be  useful  to  try  different  coefficients  (parameter  tuning)  to  test  overall  QS 

performance.  This  type  of  calculation  is  quite  modular  and  allows  us  to  use  different  sorting 

algorithms developed by different researchers and/or developers. 

In our experiments we determine a set of  k-coefficients. We also notice that some algorithms 

(hence coefficients) may behave better in some sets of initial queries. To overcome and use this 

case, we may use a set of k-coefficients to determine the first 8-10 query suggestions while we use 

another set of  k-coefficients for the remaining 2-6 suggestions. This way, it might be possible to 

increase the overall  accuracy of Top10-15 query suggestions.  We revise our formula as follows 

(assume that logarithmic scaling is performed in the Norm function): 

Final Score Vector for 1st group of QS=FSV 1= ∑
i=1

number of algorithms

k1 i⋅Norm(V i)

Final Score Vector for 2nd group of QS=FSV 2= ∑
i=1

number of algorithms

k2 i⋅Norm (V i)

where FSV1 will be used for selecting the first 8-10 query suggestions and FSV2 will be used for 



selecting the remaining 2-6 suggestions (depending on the number of final query suggestions, which 

may be a total of 10 or 15). If there are overlapping query suggestions, they should be unified in the 

final result set. This may be seen as a combined method of two different hybrid methods, where 

they  contain  different  k-coefficients  for  each  algorithm. In  this  paper,  we experiment  with  the 

previous version of our formula and leave the latter as a future work.

4.3.1.2. Rank Based Aggregation

In this line of aggregation methods, the ranks of a result set of an algorithm (in our case query 

suggestion  candidates)  are  used  to  weight  the  overall  ordering,  when  multiple  algorithms  are 

combined.

4.3.1.2.1. Borda Count Method

The Borda Count method (Borda, 1781; Dwork, Kumar, Naor, & Sivakumar, 2001) combines 

the results of different methods by weighting each item proportionally to the position of that item in 

the result set of each sub method. The formula and points that are provided by a sub method is 

illustrated in Table 1. The points for each method are computed using this table, then all points of 

candidate  queries  are  summed and final  ranking  is  obtained  by sorting  candidate  queries  with 

decreasing  average  points.  This  method  is  noted  as  Hybrid-2-Borda  Count  or  similar  in  other 

figures and tables.

TABLE 1. Borda Count ranking of candidates for a method.

Ranking Candidates Formula Points

1st query 1 n 5

2nd query 2 n-1 4

3rd query 3 n-2 3

4th query 4 n-3 2

5th query 5 n-4 1



4.3.1.2.2. Weighted Borda Count Method (Weighted Borda Fuse)

This is a slightly modified version of previous Borda Count Method, where each method is 

separately weighted by a coefficient (Aslam & Montague, 2001), just like the weighted score based 

aggregation that is mentioned in Section 4.3.1.1. We also tested this method to measure the effect of 

weighting each submethod. This method is noted as Hybrid-3-Weighted Borda Count or similar in 

other figures and tables.

4.3.1.2.3. Weighted Voting Method

This is a rather simpler method where a candidate query is given a point/vote when it exists in  

the top-n results of a sub-method. For example, if a query exists in top-n results of 4 different  

methods, it is given 4 point. We used top-30 results of sub-methods to implement this simple rank 

aggregation method.

4.3.1.3. Selection of  score and rank aggregation methods

The purpose of this work is not to compare/measure rank aggregation methods. But we try to 

select  and  use  the  most  appropriate  one  in  our  framework  for  the  query  suggestion  field.  We 

experience  the  performance  of  score  based  rank  aggregation  in  our  initial  experiments.  The 

advantage of score based aggregation is also noted in literature; according to  (Renda & Straccia, 

2003), score based methods outperform rank based methods in a metasearch engine setting.

We suggest the score based aggregation over rank based aggregation. We think (and see in our 

experiment results) that, our method of using “scores” of sorted lists, instead of rank positions are 

better, where scores are available/computable. Using “ranks, position of suggestions” may be used 

successfully when there is no “scores” of suggested queries. If there are scores, it should be better to 

use them, as they will achieve more sensitive computations, especially when we try to combine 

results of different methods. Scores of suggested queries may be think of another dimension of 

information, another vector. Let's assume the ranked list as in Table 2,



TABLE 2: Sample Query Suggestions for Rank Aggregation

Rank Query Suggestion
Scores 

(using some 
method)

1 American airline 0.9

2 Airline tickets 0.2

3 Airline bus 0.1

If we only use ranks for this suggestion, the ordering value of second item is close to the first 

one. However, if we can use scores (if they exists/computable), then the ordering value of second 

item is much lower then the first one. This situation has no affect when we have only one method, 

since the ordering is not changed whether we use ranks or scores; however, if we have more than 

one method to combine/aggregate (especially when we have many methods/features) then the score 

values of query suggestions will become very important, very effective in the final sorting. That's 

why we introduced the “comparison of queries” idea and introduced/used scores of suggestions. As 

shown in Section  6 (Experiments), we also achieve higher success rates using score based rank 

aggregation.

5. Candidate Query Scoring and Comparison Techniques Exploiting Query Features

In this section, we describe several candidate query scoring and comparison techniques that we 

employed in our proposed framework. Each of these techniques computes a score for a candidate 

query and different orderings of candidates are obtained by this way. Our framework produces a 

hybrid ordering by a combination of scores for each ordering as we mention in the previous section. 

Candidate  query  scores  can  be  computed  in  two  different  ways.  We  give  the  list  of 

techniques/features that is used in this work below.  The first group of techniques (1 through 5) 

computes a score by comparing candidate query to the initial query (qi), such as number of sessions 

candidate query and initial query occurs together. On the other hand, second group of techniques (6 

through  10)  assigns  scores  only  based  on  features  of  candidate  queries  such  as  its  frequency, 



number of results, number of clicks, etc.

1. Hitting Time scores of queries (Mei et al., 2008)

2. Session count of queries

3. Session proximity of queries

4. Path frequency scores (4 different algorithm on this feature)

5. Grade similarity of candidate and initial query

6. Number of clicks for a candidate query

7. Frequency of a candidate query (as a measure of the popularity)

8. Number of search results for a candidate query (e.g., a very rare query or a meaningless 

query may return few or no results)

9. The number of users who submits a candidate query

10. Average dwell time for query results of a candidate query (How much time users staying on 

a result document)

 

Some  features/properties  we  introduce/use  are  detailed  in  the  following  subsections.  Other 

features such as number of clicks, number of search results, frequency etc. are self-explanatory. We 

remind that all these candidate query scoring and comparison techniques are employed in our query 

suggestion framework that is described in the previous section. There are a total of 13 algorithms 

exploiting these features.

5.1. Hitting Time Scores

We implemented and used Hitting Time algorithm as a baseline method for comparing to our 

new methods. We also used it in our hybrid algorithms as a sub-method. Apart from the hybrid 

algorithms, we did not use Hitting Time in our algorithms, that is, our other algorithms are not 

based on it.

Hitting Time scores are obtained using the algorithm defined in (Mei et al., 2008). In that work, 



a graph G (basically, query click graph) is constructed with set of queries (V1), set of URL's (V2) and 

edges (E) that connect these sets. If there is a click from a query i in V1 to a URL k in V2, this means 

that there is an edge from i to k and the weight of this edge is assigned as the number of clicks and 

is denoted as w(i, k).  

Given the initial (named as starting query in Mei et al. (2008)) query (qs) that is submitted by a 

user, a subgraph is constructed by starting from the  qs and traversing the graph using depth first 

search  (DFS)  algorithm.  The  walk  on  the  graph  is  ended  when  a  predetermined  number  of 

(candidate) queries are discovered. In Section  6, we stop traversing the graph after reaching 300 

queries.  Note that,  the  original  article  in  (Mei et  al.,  2008) uses  the  DFS as  a  graph traversal 

method. We test both the DFS method and the BFS method in the candidate selection and evaluate 

their performance in Section 6.

The probability of reaching from query i to query j (transition probability) in this subgraph is 

shown by the following equation:

pij=∑k∈V 2 (w (i ,k )

d i

w (k , j)
dk

)
where di and dk are computed as:

d i=∑ j∈V 2

w(i , j) that is, sum of all clicks (frequencies) originating from the i'th query

dk=∑i∈V 1

w (i , k) that is, sum of all clicks (frequencies) originating from all queries to k'th 

URL/document.

V1: set of queries

V2: set of URLs/documents 

w(i, k): click frequency from i'th query to k'th URL, i∈V 1 , k ∈V 2

For each candidate query, an h-score, which is initially zero, is computed in an iterative manner 

as follows:

hi(t+1)=(∑j≠s

pij h j(t ))+1

s: starting (initial) query, for which we are going to find suggestions.



After a predefined number of iterations, candidate queries having the smallest  K h-scores are 

selected as query suggestions.

5.2. Algorithms Using Session Information

In this subsection, we describe two candidate query scoring algorithms exploiting sessions in 

query logs.  We follow the general  practice in  the literature and form sessions using successive 

queries of a user in a 30 minutes time window. We give details of two algorithms as follows:

5.2.1. Session Count: 

The number of sessions having both initial query (qi) and candidate queries are counted for each 

candidate query. The basic intuition behind this method is that two queries in the same session are 

related to each other similar to (Yılmazel, 2011). The frequency of such sessions can be used as the 

score for candidate queries. Recall that we define score vectors (V) in Section 4.3, for each different 

candidate scoring algorithm. Score vector for session count method is  shown below (assume 4 

candidate queries for simplicity):

Candidate Queries=[
q1

q2

q3

q4
]     

 Score Vector=V=[
Number of sessions having bothq1∧qi

Number of sessions having bothq2∧qi

Number of sessions having bothq3∧qi

Number of sessions having bothq4∧q i
]

 

5.2.2. Session Proximity

This is  a similar and improved version of the session count  method. The sensitivity  of the 



previous  algorithm is  improved by calculating  the  proximity  of  two queries  (initial  query  and 

candidate query) where both of them exist in the same sessions. The proximity of queries is defined 

as the number of query submissions between initial and candidate query (need to add 1 to prevent  

divide by zero). This method assigns higher score to candidate queries that are nearby to initial 

query in the sessions. This is inspired by the assumption that nearby queries in a session may be 

more related to each other than queries that are very far away in the session. Session proximity 

score for each candidate query q can be formulated as follows:

Session Proximity Score(q)= ∑
k=1
qi≠q

qi∈S k∧q∈Sk

number of sessions
1

|pos (Sk , qi)−pos(Sk , q)|

where  pos(Sk,  qi) and  pos(Sk,  q) are positions of initial query (qi) and candidate query (q) in 

session Sk, respectively. 

We  observe  that  this  algorithm  works  reasonably  well  when  there  is  sufficient  session 

information. Although this algorithm generally works as expected, it may fail in certain situations 

such as if the user fixes an erroneous query, where both (erroneous and correct) queries reside in the 

same session. In that case, this method could give high score for the mistyped query. This “false 

positive” should be handled (by spelling correction or suitable techniques) separately and we leave 

this for future works. 

5.3. Path Frequency Scores/Algorithms

In  this  subsection,  we  propose  new  candidate  query  scoring  algorithms  that  exploit  paths 

between initial query and candidate queries on the query click graph. In the following sections, we 

first mention how we define and construct paths and how we compute frequencies over these paths. 

Later, we describe our algorithms exploiting these “path frequencies”.



5.3.1. Path in Query Click Graph

We use  query  click  graph  to  represent  the  clicking  behavior  of  users.  In  the  context  of 

educational  search  engine  log,  each  document  is  called  a  “learning object”  (LO)  that  contains 

information for a learning objective. Hereafter, we refer to each clicked document as an LO. When 

a user searches for a query  q1 and clicks on  LO1, an edge from q1 to  LO1 is constructed. If some 

other users search for  q2 and click on  LO1 then another edge from  q2 to  LO1 is also established. 

Assume that  f1 denotes the number of times users search for  q1 and click  LO1.  Similarly, let  f2 

denotes the frequency of clicks from query  q2 to  LO1. This constitutes a relation from  q1 to  q2, 

because two different queries have received a click on the same document/LO. We can denote this 

clicking path as follows:

q1 –(f1)→ LO1 –(f2)→ q2

The path may be longer when multiple LO jump points exist in a path as following:

q1 –(f1)→ LO1 –(f2)→ q2 –(f3)→LO2 –(f4)→q3

We omit LO information and denote the path as the following notation:

q1 –(fmean1)→ q2–(fmean2)→q3

where fmean1=(f1+f2)/2 

and fmean2=(f3+f4)/2

We call this a click-path. We have three nodes, two edges (segments) in this click path. With this 

information,  q1 has  a  mutual  relationship with  q3 to  some extent.  The basic  motivation  behind 

defining these click paths is to find paths between initial query (qi) and candidate queries (qc) on the 

query click graph (i.e., qi→ q1 → ... → qn  → qc), so that we can measure the relationship between 

initial  and candidate queries.  In the next subsection, we describe four different candidate query 

scoring algorithms exploiting frequencies and lengths of such paths.



5.3.2. Using Path Frequencies

In this subsection, we define different metrics/algorithms to measure the relationship between 

initial  and candidate  queries using click paths.  The basic motivation behind these metrics  is  to 

exploit path frequencies and path lengths. First, we explain how frequencies affect the relationship 

with the following example.  It is obvious that  q4 and  q6 is much more related than  q1 and  q3, 

because number of clicks for common documents is much higher than the latter case. So, sum of 

frequencies is proportional to the degree of relationship.

path 1: q1 –(2)→ q2 –(3)→q3

path 2: q4 –(12)→ q5 –(15)→q6

Secondly, we investigate the path lengths for our metrics. Suppose that we have the following 

paths:

path 1: q1 –(10)→ q2 –(10)→q3

path 2: q4 –(10)→ q5 –(10)→ q6 –(10)→q7

It  can  be  thought  that  the  relationship  between  q1 and  q3 is  stronger  than  the  relationship 

between q4 and q7, since path 2 is longer than path 1 (assuming similar frequencies). Therefore, it is 

assumed that the degree of relationship is inversely proportional to the path length.

Note that it  is possible to have multiple paths between initial and candidate queries through 

different documents or intermediate queries. Our metrics should also consider these multiple paths 

when computing a relationship score between candidate query and initial query. We propose four 

different path based algorithms as shown in Table 3, considering all these aspects. Algorithms 1 and 

2 depend on a single path but Algorithms 3 and 4 support multiple paths. Single path algorithms use 

the first path that is found during graph traversal. Algorithms 1 and 2 give the same fixed weight of 

“one” to each path segment so they simply compute the sum of frequencies over the path. In the 



score formula, path(j) represents jth portion of path (jump point from one query to another or edge, 

segment). The frequency value (number of clicks) over the path(j) is denoted as Fr(path(j)) in the 

formula. However, Algorithms 3 and 4 assign different weights to each segment in the path which is 

inversely (exponentially) proportional to the position of path segment. The motivation behind this is 

that path segments which are closer to the initial query should have higher impact on the score 

compared to segments that are far away. The only difference between Algorithms 1 and 2 (also for 

Algorithms 3  and  4),  is  the  path  length  component.  The former  algorithm divides  the  sum of 

frequency values to the path length, while the latter one uses the square of the path length.

TABLE 3. Path Frequency algorithms.

Path

Frequency 
Algorithm 

Uses Multi 
Path

Path Segment 
Weight

Formula

Algorithm 1 No Fixed=1
Score1=

( ∑
j=0

len ( path )

Fr ( path ( j ) ))
len ( path )

Algorithm 2 No Fixed=1
Score2=

( ∑
j=0

len ( path )

Fr ( path ( j ) ))
(len ( path) )

2

Algorithm 3 Yes

Inversely proportional 

to the position of 

segment=2-j Score3= ∑
i=1

numberofpaths ( ∑
j=0

len( pathi)

Fr ( pathi ( j ) ) ⋅2
− j)

len ( pathi)

Algorithm 4 Yes
Inversely proportional 

to the position of 
segment=2-j Score4= ∑

i=1

numberofpaths ( ∑
j=0

len (path i)

Fr ( pathi ( j ) ) ⋅2
− j)

( len ( pathi ))
2

Here, we demonstrate computations for our Path Frequency based algorithms with examples. 

Assume that we have the following click path extracted from our Turkish educational search engine 

log:

açılarına  göre  üçgenler  —(4.5)→ üçgen çizimi  —(23.5)→ üçgen çeşitleri  —(5.0)→ matematik 

noktaların birbirine göre uyumu —(3.5)→ paralel iki doğru



(triangles  by  angles  —(4.5)→  drawing  triangle  —(23.5)→  types  of  triangles  —(5.0)→  math  

harmony of points —(3.5)→ two parallel lines)

Here path frequency values in the array format are [4.5, 23.5, 5.0, 3.5]. Algorithms 1 and 2 

compute  scores  of  12.17  and  4.06  respectively.  As  seen  in  Table  3,  Algorithm  2  gives  more 

importance to the path length.

Secondly, we give two click paths from initial query  “açılarına göre üçgenler”  (triangles by 

angles) to  the  candidate  query  “geniş  açı”  (wide  angle),  in  order  to  demonstrate  multi  path 

algorithms (Algorihtms 3 and 4). We present each path and their scores for two different algorithms. 

The total scores for Algorithms 3 and 4 are computed as 8.62 and 3.33, respectively.

Path: 0 

açılarına göre üçgenler —(4.5)→ üçgen çizimi —(23.5)→ üçgen çeşitleri —(5.5)→ geniş açı 

(triangles by angles —(4.5)→ drawing triangle —(23.5)→ types of triangles —(5.5)→ wide angle) 

Path frequencies: [4.5, 23.5, 5.5] 

Algorithm 3 path value: 5.87

Algorithm 4 path value: 1.95

Path: 1 

açılarına göre üçgenler —(4.5)→ üçgen çizimi —(2.0)→ geniş açı 

(triangles by angles —(4.5)→ drawing triangle —(2.0)→ wide angle)

Path frequencies: [4.5, 2.0] 

Algorithm 3 path value: 2.75 

Algorithm 4 path value: 1.38 

We note that multi path algorithms detect and use paths that are not circular. Our path detection 



step detects  and eliminates circular paths.  However, paths containing other paths (paths sharing 

common segments) are preserved. 

5.3.3. The Difference of Path Frequency Algorithm to the Hitting Time Method

Both Path Frequency and Hitting Time algorithms uses query-URL click frequencies. To avoid 

confusion,  we  explain  how  they  are  operating  different  on  the  same  data.  The  Hitting  Time 

algorithm that we tested as a baseline method uses “transition probabilities” from one query to 

another. For example, let's assume we are traveling from query i (qi) to URL k (urlk) (as in Section 

5.1). In this case, the transition probability from query i to url k is computed like: 

Transition Probability=
w(i , k )

d i

where di is computed as:

d i=∑ j∈V 2

w(i , j)  that is, sum of all clicks (frequencies) originating from the i'th query, 

and 

w(i, k) = Click count (frequency) from query i to URL k.

That is, all clicks originating from qi are taken into account, not surprisingly, as “probability” is 

computed. In our Path Frequency method, however, probabilities are not used, just click frequencies 

from qi to urlk are used (considering multiple paths into account). We also weight click frequencies 

based on the distance to the initial query.

5.4. Educational Features Exploited for Query Suggestion

As we noted  earlier,  we  experiment  our  query  suggestion  algorithms  using  an  educational 

search engine log. Using educational features while developing these algorithms may improve the 

overall accuracy. We exploit grade and course features of queries. In the following subsections, we 

explain how we extract and use these features in our query suggestion algorithms. We note that 

other educational features such as school, age, curriculum etc. may also be utilized for the same 

purpose but we leave those features as the future work. 



5.4.1. Grade Similarity

Educational search engine used in this study contains learning objects (documents) and each 

learning object is associated with one or more grades in K12 level. We try to predict the grade 

information  of  a  query  by  analyzing  its  results  (learning objects).  The distribution  of  learning 

objects in the top-k result of the query for each grade is computed. This distribution shows that 

which grades are more likely for the query. We compute this grade distributions for the initial query 

(qi) and candidate queries. Our motivation behind this feature is to promote candidate queries that 

have similar grade distribution with the initial query. In other words, we simply want candidate 

queries  targeting the same grade as the initial  query. We do not  want  to  suggest  queries  for  a 

different grade.

Grade similarity score for each candidate  query q is  computed by the below formula.  This 

formula  basically  computes  the  dot  product  of  grade  distribution  vectors  of  search  results  for 

candidate  query  q and  initial  query  qi.  Outer  summation  accounts  for  each  grade  and  inner 

summations compute the counts of search results associated for the kth grade, both for candidate and 

initial queries. Our formula produces higher scores for queries having more “common” grades. It is 

expected to eliminate candidate queries that are of different student grade than the initial query, for 

an educational search engine. 

Grade Similarity Score(q ,q i)=∑
k=1

ng

(∑
j=1

nr

F (q ,k , j)⋅∑
j=1

nr

F (q i , k , j))
 where,

F (q ,k , j)={1      If search result document at rank j for query q is associated with grade k 
0      Otherwise     

ng  is the number of grades and nr  denotes the number of search results (whichever is larger, q  or qi )

This algorithm may not be sufficient standalone for query suggestion, however, accuracy will 

improve when used in conjunction with other algorithms, as described in Section 4 and 4.3.



5.4.2. Course Matching

Educational search engines provide learning resources related to different courses such as math, 

science, social sciences and history. Our motivation here is to find a way to predict the target course 

for  a  query. If  we  have  such a  predictor,  we  can  compare  target  courses  of  initial  query  and 

candidate queries, so we can enforce them to be the same course.

We follow a similar idea as in grade similarity. Each search result (learning object) is associated 

with only one course. We compute support count for each course based on search results of a query 

by below formula  (support  count  for  course  c).  Each document for  a  course contributes  to  its 

support count based on its rank in the search result list. Documents at high ranks have higher impact 

on support counts compared to the ones at low ranks.

Supportc (q)=∑
j=1

nr

G(q , c , j)

 where,

G(q ,c , j)={
1
j

     If the search result document at rank j for query q is associated with course c 

0      Otherwise     

nr  denotes the number of search results

Next,  we normalize support  counts for each course by computing the support  ratios by the 

below formula. Finally, we predict the target course of a query if the maximum support ratio is 

higher than a predetermined threshold value (In our experiments, we use 0.8 as the threshold). If  

any of the support ratios does not satisfy this threshold, we could not identify the course. 

Support Ratioc (q)=
Support c(q)

∑
c=1

nc

Support c (q)

 where, nc  denotes the number of courses

If we can identify the target course of the initial query (qi) we can select candidate queries from 

the same course. Note that queries targeting different courses could be eliminated in different steps 



of our framework such as in query click graph construction, generic controls or final controls steps.  

It may be useful to eliminate such queries at the beginning while we traverse query click graph in 

order to construct a better candidate query set. The aim here is to give a chance to other candidates 

referring to the same course as the initial query instead of investing processing power for candidates 

for different courses. 

Please note that if  we cannot determine the target course for the initial  query (if no course 

satisfies the support ratio threshold), we skip course matching step and does not filter candidate 

queries while traversing the query click graph.

We also evaluate the performance of QS algorithms without course filtering but achieved even 

lower success rates (these results are not given in Experiments section).

6. Experiments and Discussions

The  framework  and  algorithms  mentioned  in  previous  sections  are  tested  by  generating 

suggestions for a set of queries randomly selected from our query log. The quality of suggestions is 

then evaluated by four human assessors. Experimental results  are evaluated using two different 

metrics.  We give the  details  of  our  dataset,  experimental  setup  and experimental  results  in  the 

following subsections.

6.1. Dataset

We use a sample query log of a Turkish educational search engine. VitaminTM is a commercial 

web-based educational framework that provides interactive educational content for K12 students in 

Turkey. Vitamin  has  more  than  1.2  million  registered  users.  Users  can  search  for  educational 

content on the web interface. Query log contains issued queries, clicked results and their ranks. 

(Usta et al., 2014) analyze query, session, user and click characteristics of this query log. 

Our sample in this study consists of 2,028,395 query submissions of 52,713 users received for 6 

months between December 2013 and May 2014. This sample contains 325,241 query submissions 

with at least one click. When we construct query click graph, queries with no clicks are not used. 



However, session related  features  (session count  and session  proximity)  are  extracted from the 

whole set including queries with no clicks. We have 52,635 unique queries in our sample.

Even though our query suggestion framework may also work with algorithms that does not 

require a query log, in this study we use query log based query suggestion algorithms. Therefore 

quality and size of the query log can be crucial for performance of these algorithms. We estimate 

that the success rate of our algorithms will rise as the dataset size increases. 

6.2. Experiment Procedure

In this subsection, we give details of our experiment procedure. Each step of our experiment is 

summarized as follows:

• Session reconstruction

• Random selection of frequently used, long tail and torso queries

• Query suggestions on these random queries, using eight different algorithms (We actually 

tested many more algorithms with different parameters, but included eight of them here)

• Evaluation of top-k query suggestions by four human assessors (k=10 currently)

• Calculating quality of suggestions according to algorithms, types of queries (head, torso, 

tail)

• Statistical significance tests

The following subsections describe each of these steps.

6.2.1. Reconstruction of query sessions

We reconstruct query sessions since session information is used in our algorithms. Successive 

queries of a user within a 30-minute time window are considered part of the same session, like 

previous approaches (Torres & Weber, 2011). If the time interval between new query and previous 

query for a specific user is longer than 30 minute, then it is considered as a new query session. Note 



that our session features (session count and session proximity) require initial query and candidate 

query to exist in the same session. Therefore we only focus on sessions with at least two queries. In 

our log, we extract 150,214 sessions having more than one query.

6.2.2. Query selection

The evaluation of query suggestions requires relevance judgments of human assessors. Since 

manual  labeling  is  a  time  consuming  process,  we  can  measure  the  performance  of  various 

algorithms for  a  limited  amount  of  queries.  We randomly select  20  rarely  used (long tail),  20 

frequent queries (head) and 20 queries between them (torso) from the query log. Our aim here is to 

analyze performance of algorithms for queries with varying frequency. Queries are considered rare, 

torso and frequent  according to  the  criteria  shown in  Table  4.  That  is,  queries  with  frequency 

between 5 and 20 are considered “rare” etc. Queries with frequency less than 5 are observed and 

assumed to be erroneous or useless and are not taken into account.

TABLE 4. Query categorization/selection criteria.

Query Type Minimum frequency Maximum frequency

Rare (long tail) 5 20

Torso 21 500

Frequent (Head) 501 ∞

6.2.3. Algorithms used in experiments

In this work, we suggest/work on 10 different query scoring and suggestion algorithms (or 13 

including different types of Path Frequency algorithms) along with 4 different aggregation methods 

of  those query suggestion  algorithms.  One can use any combination of  these  query suggestion 

algorithms  and  aggregation  methods.  In  this  work,  the  following  eight  algorithms/hybrid 

combinations are experienced and shown in our evaluation results:

 1. Non-Hybrid Methods:

 a) Hitting Time (5.1) with Depth First Search (DFS) graph traversal method. Note that, in 

addition to the original method, we apply generic controls (4.2), (HT-DFS)



 b) Hitting Time (5.1) with Breadth First Search (BFS) graph traversal method, (HT-BFS)

 c) Path Frequency-3 Algorithm, mentioned in Section 5.3, (PF3)

 d) Path Frequency-4 Algorithm, mentioned in Section 5.3, (PF4)

 2. Hybrid methods:

 a) Hybrid-1-BFS method (4.3.1.1),

 b) Hybrid-2-Borda Count method (4.3.1.2.1),

 c) Hybrid-3-Weighted Borda Count method (4.3.1.2.2),

 d) Hybrid-4-Weighted Voting method (4.3.1.2.3),

Hitting Time algorithm is proposed by  (Mei et al., 2008), but we propose to use BFS as the 

graph traversal method while searching for candidate queries. We show that BFS traversal produce 

better suggestions compared to DFS. The remaining algorithms are proposed in this study.  For all 

algorithms,  we use the generic  controls  procedure  to  eliminate  some meaningless  or  erroneous 

queries, as described in Section 4.2. It is also applied to the Hitting Time algorithm, which makes it 

slightly different than the original method in the article (Mei et al., 2008). 

We produce top-10 query suggestions for each query in our sample of 60 queries (20 rare, 20 

torso and 20 frequent) using each of query suggestion algorithms. Therefore, we have different 

query suggestions for the same set of 60 queries, for each algorithm we tested. The relevance scores 

of  each  query  is  computed  separately  for  each  algorithm that  is  tested.  These  suggestions  are 

evaluated by four human assessors. The assessors are 2 Computer Science PhD students, a high 

school teacher and  a faculty member with a PhD degree, their ages are between 30-40 years. All  

assessors are familiar with search engines.

6.2.4. Parameter tuning for use in hybrid method(s)

All of our hybrid methods except the Borda Count method need coefficient (weight) parameters 

to be set. We experiment with the following parameter tuning methods: 



6.2.4.1. Parameter tuning using cross validation

We used cross validation technique in order to determine parameters. We had 60 queries in the 

evaluation data set. We split the dataset into 4 pieces, each containing 15 queries. We evaluated and 

measured the performance of candidate query scoring methods (sub-methods that are mentioned in 

Section  5) on each piece of 15-queries dataset and used average relevance scores of methods as 

their coefficients in the hybrid method. We then evaluated the performance of hybrid method(s) 

with the determined coefficients on the remaining queries (3 pieces of 15-queries dataset, total of 

45).  We repeat  this  for  all  pieces  and computed  the  average  performance  for  hybrid  methods. 

However, we do not obtain better average relevance values than the success rate of Path Frequency-

3 (an underlying method in Hybrid methods) using cross validation,  hence we conduct  manual 

parameter tuning for these 3 hybrid methods.

6.2.4.2. Manual parameter tuning

We try different parameters by trial and error, based on our experiences and observations on the 

produced query suggestions. Since there are 13 different sub-algorithms (hence parameters) to be 

set, it is infeasible to test all combinations of parameter values. Therefore, we apply the following 

strategy:

We have  the  success  rates  of  13  different  sub-algorithms  obtained  during  cross  validation 

parameter tuning method (by means of 15-query sets). Using this information, we test primarily the 

parameters of best sub-algorithms in a reasonable range for top-4 (Path Frequency-3, Hitting Time, 

Session Proximity, Click Counts) sub-algorithms, determine best parameters for each of Hybrid-1, 

Hybrid-3 Weighted Borda Count and Hybrid-4 Weighted Voting methods (Hybrid-2 Borda Count 

has static parameters of all 1).

It is possible to use/develop other parameter tuning methods to achieve higher success rates, 

however this is not in the scope of this work and left as a future work.



6.2.5. Evaluation setup

We prepare a simple web interface as shown in Figure  2 (Queries and relevance grades are 

written in Turkish) for evaluating each query suggestion algorithm. Assessors have to login to the 

web interface  with  a  user  name.  We have  four  human assessors  and each of  them  judges  the 

relevance of top-10 suggestions of queries produced by algorithms. The assessors were unaware of 

the  query  suggestion  algorithm while  assessing  the  suggestions.  This  leads  to  a  more  accurate 

assessment, as assessors were neutral to the query, knowing nothing about the query type (head, 

torso and longtail) and algorithm used.

As shown in Figure 2, we use a four point assessment such that  each suggestion is judged as 

“Highly Relevant” (Çok iyi), “Fairly Relevant” (İyi), “Marginally Relevant” (Kötü) and “Irrelevant 

at all, wrong course” (Çok kötü, ilgisiz ders). Relevance levels for each judgment are listed in Table 

5.

TABLE 5. Relevance levels of each assessment for the evaluation.

Relevance level Assessment

0 Irrelevant at all, wrong course
1 Marginally relevant, at least same course
2 Fairly relevant
3 Highly relevant



FIG. 2: Web-based GUI of the query suggestion evaluation system

6.3. Experimental Results

In this subsection, we present our experimental results. We first analyze the agreement among 

four human assessors using Cohen’s Kappa metric. Next, we investigate the performance of query 

suggestion algorithms using two different metrics such as average relevance level and normalized 

discounted  cumulative gain (NDCG).  Finally, we perform statistical  significance  tests  over  our 

results.

6.3.1. Assessor agreement

Cohen's weighted Kappa statistic (Cohen, 1968) measures the agreement among two raters in a 

user study. We calculate the weighted Kappa for each pair of our assessors (for all eight methods we 

worked on) and then take the average. The average pairwise Cohen's Kappa value is 0.37 which is 

considered  to  be  a  fair  agreement  (Landis  & Koch,  1977).  In  this  test,  results  below zero  are 

considered as no agreement, above zero is considered some agreement and 1 is the ideal situation 



which presents the perfect agreement (If the agreement is by chance then Kappa value is zero). Our 

test shows some degree of agreement among our raters. The interpretation of kappa agreement is 

shown in Table 6 (Landis & Koch, 1977). According to this table, the kappa value of 0.37 is close to 

the upper boundary of the kappa classification, which is close to “moderate agreement”.

TABLE 6. Inter-rater Agreement for Interpretation of Kappa

Kappa value (k) Agreement

< 0 Poor

0 – 0.20 Slight

0.21 – 0.40 Fair

0.41 – 0.60 Moderate

0.61 – 0.80 Substantial

0.81 – 1.00 Almost perfect

6.3.2. Performance of algorithms

We compare the performance of query suggestion algorithms using two different metrics. The 

first  metric  simply  computes  the  average  relevance  level  (ranges  between  0  and  3)  for  each 

algorithm based on assessor ratings. We also analyze the success rates for queries with varying 

frequencies (head, torso, tail). As a second metric, we employ normalized discounted cumulative 

gain (NDCG) measure in order to take the ranking of query suggestions into account.

6.3.2.1. Performance of algorithms using average relevance

We compute the average  relevance  of  each query of  each algorithm, then we compute the 

average of those relevance scores for each algorithm. The list of abbreviations of algorithms that are 

used in figures and other tables are shown in Table 7.

Figure 3 shows average relevance scores of query suggestion algorithms for 60 queries in our 

experiments. It is seen that Hitting Time-DFS has the lowest success rate. Our path frequency based 

algorithms and hybrid algorithms achieve the highest average relevance levels. Path Frequency-3 is 

the  best  algorithm  among  non-hybrid  methods,  while  Hybrid-1  (with  weighted  score  based 



aggregation) is the best algorithm among all.

We plot the performance gain, as percent of new algorithms compared to the baseline Hitting 

Time-DFS method in Figure 4. It is seen that using BFS graph traversal in candidate selection step 

improves the Hitting Time method by 66%. Path frequency based algorithm that we propose in this 

paper  considerably  increases  the  average  relevance  level  of  the  baseline,  by  81%. Finally, our 

hybrid algorithm that combines several features and methods (Hybrid-1 BFS) achieves the highest 

improvement with 90% relative increase. This shows that Hybrid methods that rely on score based 

aggregation  achieves  higher  relevance  levels  than  Hybrid  Methods  that  rely  on  rank  based 

aggregation, hence we primarily suggest using score based aggregation as in Section 4.3.1.1.

In  our  experiments,  we  observe  that  new  algorithms  eliminate  most  of  the 

“meaningless/erroneous”  queries  that  were  suggested  by  the  baseline  method,  even  when  the 

generic controls routine (Section 4.2) was not used. 

The statistical  significance tests  of average relevance scores that are shown in Figure  3 are 

given in Section 6.3.3. 

TABLE 7. List of Abbreviations of Algorithms Used

Abbreviation Algorithm

HT-DFS 
Hitting Time Algorithm using Depth First Search (DFS) as graph traversal method 
(original Hitting Time method)

HT-BFS
Hitting Time Algorithm using Breath First Search (BFS) as graph traversal method 
(modified Hitting Time method)

PF3-BFS Path Frequency-3 method (5.3)

PF4-BFS Path Frequency-4 method (5.3)

Hybrid-1 Hybrid algorithm using BFS and weighted score based aggregation (4.3.1.1)

Hybrid-2-Bo
Hybrid algorithm using BFS and Borda Count method as rank aggregation 
(4.3.1.2.1)

Hybrid-3-WBo
Hybrid algorithm using BFS and Weighted Borda Count method as rank 
aggregation  (4.3.1.2.2)

Hybrid-4-WV
Hybrid algorithm using BFS and Weighted Voting method as rank aggregation 
(4.3.1.2.3)



Next, we evaluate performance of query suggestion algorithms for head, torso and tail queries. 

FIG. 4. Percentage performance gain of new algorithms (in average relevance 
level) with respect to Hitting Time-DFS baseline.

FIG. 3. Average relevance levels for query suggestion algorithms



Figure 5 shows average relevance scores of algorithms for these types of queries, separately. As the 

first finding, query suggestions for head (frequent) queries have the highest relevance scores for all 

methods. This can be attributed to the size of available click data for these queries compared to 

torso and tail queries. All new method's success rates are higher than the baseline method. However, 

Hitting Time-BFS seems very close to the Hybrid-1 for frequently used (head) queries. Hitting 

Time-BFS is the slightly modified version of the original method, which just uses Breadth First 

Search as graph traversal method. Regarding this, the remaining new methods (other than Hybrid-1) 

have no advantage for head queries, with respect to the Hitting Time-BFS method. Torso and tail 

queries show similar (close to each other) performances within each algorithm.  However, it  is 

interesting to see that, for Path Frequency and Hybrid methods, the success of tail queries are higher 

than torso queries (within that method), while tail queries have lowest success for both Hitting Time 

(DFS and BFS) methods. This might be attributed to the fact that combining multiple methods 

increases the success for the the tail queries, as we suggest in our framework.

FIG. 5. Average relevance levels of query suggestion algorithms for head, torso and tail queries



We plot the performance gain of new algorithms compared to the baseline for head, torso and 

tail queries in Figure 6. As we see, the highest performance gain is observed for head queries mostly 

and the highest performance gain for head queries is observed for Hybrid-1-BFS method. It may 

also notable to see the performance gain for head and longtail queries for PF3-BFS algorithm is 

very similar, which shows the success of this algorithm.

Hitting Time-BFS method increase average relevance level by around 107% for head and 47% 

for torso queries. The improvements for Path Frequency and Hybrid algorithms show similar trend 

such that they increase relevance level for torso queries by around 50-60%. All Path Frequency and 

Hybrid algorithms have higher improvements for torso and tail  queries,  while only Hybrid-1 is 

higher for head queries, with respect to the performance improvement of Hitting Time-BFS.

Please note that, in all methods (including the original and modified Hitting Time-BFS), we run 

“generic controls” routine (which includes course checking) to further improve QS performance and 

FIG. 6. Percentage performance gain of new algorithms (in average relevance level) for head, 
torso and tail queries, separately.



eliminate obvious errors.

6.3.2.2. Performance of algorithms using NDCG

As the second evaluation metric, we use NDCG to compare performance of query suggestion 

algorithms. This well-known metric in web search literature, also accounts for ranks of results in 

addition to the relevance level. Figure 7 shows performance of algorithms in NDCG metric for top-

10 query suggestions. We compute NDCG values for a query using relevance levels (between 0-3) 

of four human assessors, separately. Then we compute the average of four NDCG values. 

We can see the higher success rates for all new suggested algorithms for NDCG metric too. The 

Path Frequency-3 algorithm achieves success rates very similar to highest one, Hybrid-1-BFS, as 

like average relevance metric. Figure 8 shows the increase of performance of new algorithms using 

NDCG metric. We can see that Path Frequency and Hybrid-1 algorithms achieve high performance 

gain.  However, Hybrid Borda Count and Hybrid Weighted Voting algorithms have very similar 

performance gain with respect to HT-BFS. This may show us that, rank aggregation methods of 

Borda Count and Weighted Voting may not achieve much performance gain with respect to score 

based rank aggregation, unless other modifications are made.



FIG. 7. NDCG performance of algorithms

FIG. 8. Percentage performance gain of new algorithms (in NDCG metric) with respect to 
Hitting Time-DFS baseline.



6.3.3. Statistical Significance Tests

To assess and validate the results of the experiment, we run statistical significance tests. We 

have eight different query suggestion algorithms. We run paired t-tests to compare our algorithms to 

the baseline method, Hitting Time-DFS, using average relevance scores of 60 queries as our sample.

Our null hypothesis here is that there is no statistically significant difference between relevance 

levels  or  NDCG values  of  two algorithms.  We present  the results  of these tests  for  8 pairs  of 

algorithms in Table 8.

It is seen that all new suggested methods obtain statistically significant difference in relevance 

level compared to the baseline method (Hitting Time-DFS). On the other hand, when we compare 

two leading methods (Path Frequency-3 and Hybrid-1-BFS) with Hitting Time-BFS to measure 

their improvement than the slightly modified version of the baseline method (Hitting Time-BFS), 

we can see that, there are still significant improvement in the new methods. It is seen than there is 

no  statistical  significant  difference  between  HT-BFS and  our  PF3 algorithm based  on average 

relevance level.

TABLE 8. Results of paired t-tests for some of pairs of query suggestion algorithms.

Algorithm 1 Algorithm 2
p-value for 

NDCG
p-value for 

Average Rel.
Meaning for 

NDCG
Meaning for 
Average Rel.

Hitting Time-
DFS

Path Freq-3 BFS 5.58 × 10-13 3.85 × 10-12 Very Significant 
improvement

Very Significant 
improvement

Hitting Time-
DFS

Path Freq-4 BFS 1.30 × 10-12 3.07 × 10-13 Very significant 
improvement

Very significant 
improvement

Hitting Time-
DFS

Hybrid-1 BFS 8.22 × 10-14 7.68 × 10-13 Very Significant 
improvement

Very Significant 
improvement

Hitting Time-
DFS

Hybrid-2 Borda 
Count

4.09 × 10-11 5.90 × 10-13 Very Significant 
improvement

Very Significant 
improvement

Hitting Time-
DFS

Hybrid-3 Weighted 
Borda Count

3.84 × 10-12 1.39 × 10-14 Very Significant 
improvement

Very Significant 
improvement

Hitting Time-
DFS

Hybrid-4 Weighted 
Voting

1.92 × 10-10 2.75 × 10-12 Very Significant 
improvement

Very Significant 
improvement

Hitting Time-
BFS

Path Freq-3 BFS 0.007 0.123
Significant 

improvement
No Significant 
improvement

Hitting Time-
BFS

Hybrid-1 BFS 0.001 0.0381
Significant 

improvement
Significant 

improvement



7. Conclusion

In this study, we show that query suggestion problem can be reduced (simplified) to a query 

comparison problem. We establish a modular, well-defined framework that may contain many other 

query suggestion/comparison algorithms. Our framework is also important for practical purposes 

such that one can contribute to the query suggestion field by developing a superior method for a  

specific step, without having to deal with all aspects. We also design and implement 13 different 

algorithms  utilizing  educational  and  other  features  of  queries,  using  our  framework.  Our 

experiments use a real life educational search engine log. We conduct an experiment in order to 

measure the relevance of query suggestions and show that new algorithms possess higher success 

rates (of about 66-90%) than the baseline method. This work also demonstrates that reduction and 

simplification of the query suggestion problem makes developing and combining query suggestion 

algorithms easy and practical.

As  a  future  work,  it  is  possible  to  exploit  additional  educational  features  such  as  related 

curriculum items,  user  demographic  features  etc.  Including a  spell  checker  would  increase  the 

accuracy of the suggestions. We also plan to integrate content-based query suggestion methods that 

do not rely on query logs into our framework.
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